SKVedge

Sample Paper

(Class XII studying/XIIth Passed)

(Engineering)

IMPORTANT INSTRUCTIONS

A. GENERAL:

- Please read the instructions given for each question carefully and mark the correct answers against the question numbers on the answer sheet in the respective subjects.
- Duration of Test is 1 Hour.
- This Test contains 40 questions divided in 3 sections. Section I contains questions of Physics and Section II contains questions of Chemistry and Section III contains questions of Mathematics.
- Maximum marks are 80.

B. MARKING SCHEME:

Each subject in this paper consists of following 3 types of sections:-

SECTION - I

- The section contains **13** questions.
- Each question has four options. *Only one* of the four option is correct.
- For each question, marks will be awarded in one of the following categories :

Full Marks : +2, If only the correct options is marked.

Zero Marks : 0, In all other cases.

SECTION - II

- The section contains 13 questions.
- Each question has four options. Only one of the four option is correct.
- For each question, marks will be awarded in one of the following categories:

Full Marks : +2, If only the correct options is marked.

Zero Marks : 0, In all other cases.

SECTION - III

- The section contains **14** questions.
- Each question has four options. *Only one* of the four option is correct.
- For each question, marks will be awarded in one of the following categories :

Full Marks : +2, If only the correct options is marked.

Zero Marks : 0, In all other cases.

All the Best!

Section - I (Physics)

1.	A pendulum bob of mass m carrying a charge q is at rest with its string making an angle $ heta$ with the						
		ertical in a uniform horizontal electric field E. The tension in the string is					
	(a) $\frac{qE}{\sin\theta}$	(b) $\frac{qE}{\cos\theta}$	(c) $\frac{mg}{\sin\theta}$	(d) mg			
2.				500μ C. Then electric field strength			
	at its surface is						
	(a) $1.125 \times 10^6 \text{N/C}$		(b) $2.25 \times 10^6 \text{ N/C}$				
	(c) zero		(d) $44.5 \times 10^6 \text{ N/C}$				
3.	If P.D. across a capac	citor is changed from	15 V to 30 V, work done is W. What will be the work				
	done when P.D. is changed from 30 V to 60 V?						
	(a) W		(b) 3 W				
	(c) 4 W		(d) 2 W				
4.	Ammeter is always i	used					
	(a) in parallel with t	he element through w	which current is to be	determined			
	(b) to simulate the element across which voltage is to be determined						
	(c) in series with the	e element through wh	ich current is to be de	etermined			
	(d) to simulate the e	lement through which	h resistanceis to be d	etermined			
5.	Two charges - 10C a	and +10C are placed 1	0 cm apart. Potential	at the centre of the line joining the			
	two charges is:						
	(a) zero	(b) 4 V	(c) 2 V	(d) – 2 V			
6. The resistances of the four arms P, Q, R and S in a Wheatstone's bridge are 10 ohm, 30 ohm							
				of the cell are 7 volt and 5 ohm			
	respectively. If the galvanometer resistance is 50 ohm, the current drawn from the cell will be:						
	(a) 0.2 A		(b) 1.0 A				
7	(c) 0.1 A	argo 100 timos that of	(d) 2.0 A	ing in a circular path by radius 0.0			
/.	A particle having charge 100 times that of an electron is revolving in a circular path by radius 0.8						
	m with one rotation per second. The magnetic field produced at the centre is: (a) $10^{-15}\mu_0$ (b) $10^{-17}\mu_0$						
	(c) $10^{-16}\mu_0$		(d) $10^{17}\mu_0$				
R		oving coil galvanomet		ons to 10 divisions, when a shunt			
0.		e resistance of galvano		ons to 10 divisions, when a shant			
	(a) 50Ω	(b) 48Ω	(c) 12Ω	(d) 24Ω			
9.		lation of a magnetic n	• •	(6) = 1-1			
				MR.			
	(a) $T = 2\pi \sqrt{\frac{1}{MB}}$	(b) $T = \sqrt{\frac{I}{MB}}$	(c) $T = 2\pi \sqrt{\frac{MB}{I}}$	(d) $T = \pi \sqrt{\frac{MB}{I}}$			
10	. Two bar magnets ha	ving same geometry	with magnetic mome	nts Mand 2Mare firstly placed in			
	such a way that thei	r similar poles are on	the same side and its	period of oscillation is T_1 . Now the			
	polarity of one of the	e magnets is reversed	and its time period b	ecomes T $_2$. Then,			
	(a) $T_1 < T_2$		(b) $T_1 = T_2$				

(d) $T_2 = \infty$

(c) $T_1 > T_2$

11.	A pair of adjacent co	oils has a mutual in	nductance of 1.5 H. I	f the current in one coil changes from 0			
	to 20 A in 0.5 s, char	_					
	(a) 45 Wb	(b) 35 Wb		(d) 30 Wb			
12.				istance R is broken into two equal parts			
	in the ratio $\frac{\eta}{1}$, which	are then joined in	parallel. This comb	ination is then joined to a cell of emf $arepsilon$.			
	The time constant of						
	(a) $\frac{L}{R^2}$	(b) $\frac{L}{R}$	(c) $\frac{2L}{R}$	$(d)\frac{L}{2R}$			
13.	A transformer is use	ed to light a 100 W	$^{\prime}$ and 110 V lamp fro	om a 220 V mains. If the main current is			
	0.5 A, the efficiency						
	(a) 50%	(b) 90%	(c) 30%	(d) 10%			
		<u>S</u>	<u> Section - I (Chemis</u>	try)			
14.	The plant cell will s	hrink when placed	l in:				
	(a) hypotonic solution	on	(b) water				
	(c) hypertonic solution	ion	(d) isotonic sol	ution			
15 .	15. Which one of the following pairs will from an ideal solution?						
(a) Phenol and aniline (b) n – hexane and n - heptane				and n - heptane			
	(c) chloroform and acetone		(d) ethanol and	(d) ethanol and acetone			
16.	A compound CaCl ₂ ·	6H ₂ O undergoes c	omplete dissociatio	n in water. The Van't Hoff factor i is:			
	(a) 3	(b) 4	(c) 9	(d) 6			
17 .	The conductivity of	0.20 M solution of	f KCl at 298 K is 0.02	$248~\mathrm{S}~\mathrm{cm}^{-1}$. Calculate its molar			
	conductivity.						
	(a) 124.0 S cm ² mol	-1 -1	(b) 122.0 S cm ²	² mol ⁻¹			
	(c) 129.0 S cm ² mol	-1	(d) 120.0 S cm ²	² mol ⁻¹			
18.	When KMnO ₄ acts a	as an oxidizing age	nt and ultimately fo	orms, MnO_4^{2-} MnO $_2$, Mn $_2$ O $_3$ and Mn $^{2+}$			
	then the number of	electrons transfer	red in each case:				
	(a) 3, 5, 7, 1						
	(b) 1, 3, 4, 5						
	(c) 4, 3, 1, 5						
	(d) 1, 5, 3, 7						
19.	Electrolysis of dilute	e aqueous NaCl sol	ution was carried o	ut by passing 10 milliampere current.			
	The time required to	o liberate 0.01 mol	of $\rm H_2$ gas at the cat	thode is (1 Faraday = 96500 C mol^{-1})			
	(a) $1.93 \times 10^5 s$		(b) 19.3×10^5 s	3			
	(c) $9.34 \times 10^4 s$		(d) 1.93×10^4 s	3			
20.	Unit of rate constant	t for the zero orde	r reaction is:				
	(a) $\text{mol}^{-2} \text{L}^{ 2} \text{s}^{ -1}$		(b) s^{-1}				
	(c) $\text{mol}^{-1} \text{ L s}^{-1}$		(d) mol L^{-1} s $^{-1}$	1			
21.	The half – life period	d for a zero order r	eaction is equal to				
	(where [R] ₀ is initial	l concentration of	reactant and k is rat	te constant)			
	(a) $\frac{2k}{[R]_0}$		(b) $\frac{2.303}{k}$				
	0		7.0				
	$(c)\frac{[R]_0}{2k}$	_	(d) $\frac{0.693}{k}$				
22.	Which of the followi	ng is paramagneti	c as well as coloure	d ion?			

	(a) Sc ³⁺	(b) Ti ⁴⁺⁺					
	(c) Cu ⁺	(d) Cu ²⁺					
23.	Silver ornaments turn black by the presen	nce of which gas in th	e atmosphere?				
	(a) O_2 (b) N_2	(c) H_2S	(d) Cl ₂				
24.	On addition of small amount of KMnO ₄ to	concentrated H ₂ SO	4, a green oily compound is				
	obtained which is highly explosive in natu						
	(a) MnO_2 (b) Mn_2O_2	(c) Mn ₂ O ₃	(d) MnSO ₄				
25.	The pair [$Co(NH_3)_4 Cl_2$] Br $_2$ and [$Co(NH_3)_4 Cl_2$]	NH ₃) ₄ Br ₂] Cl ₂ will	show:				
	(a) Ionization isomerism						
	(b) Hydrate isomerism						
	(c) Coordinate isomerism						
	(d) Linkage isomerism						
26.	Which of the following species is not expected	d to be a ligand?					
	(a) NH_4^+ (b) H_2O	(c) CO	(d) NH ₃				
	<u>Sectio</u>	<u>n - III (Mathematics</u>	<u>5)</u>				
27.	If $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, then determinant of $A^2 - 2A$	A is					
23. S (a 24. O (a 25. T (a (a (a 26. W (a 27. H (a (a (a 29. A 1 2 29. A 1 2 31. H (a (a (a (a 31. H (a	(a) – 25	(b) 25					
	(c) – 5	(d) 5					
] [1] [0]				
28.	Let M be a 3×3 matrix satisfying M $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} =$	$\begin{bmatrix} 2 & M & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$	and M $ 1 = 0 $. Then the sum				
		[3] [0] [-1	[] [1] [12]				
	of the diagonal entries of M is	(-) ((4) 0				
20	(a) 7 (b) 8	(c) 6	(d) 9				
29.	A function $f: R \rightarrow R$ satisfies						
	1. $f(x + y) = f(x) + f(y)$, for all x and y						
	2. f is continuous at $x = 0$.						
	Then,						
	(a) f is a constant function						
	(b) f is a continuous everywhere						
	(c) f is not continuous at more than one point						
	$ (d) f(1) = 0 $ $ \sin^2 x $						
30.	$\lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}} $ equals						
	(a) $2\sqrt{2}$ (b) 4	(c) $\sqrt{2}$	(d) $4\sqrt{2}$				
	If the matrix $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ \lambda & -3 & 0 \end{bmatrix}$ is singular, the						
31.	If the matrix $\begin{bmatrix} -1 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ is singular, the	hen λ =					
	(a) -2 (b) 1	(c) – 1	(d) 2				
32	Let $\lambda \in \mathbf{R}$. The system of linear equations		(u) 2				
J2.	$2x_1 - 4x_2 + \lambda x_3 = 1$,					
	$x_1 - 6x_2 + x_3 = 2$						
	$\lambda x_1 - 0x_2 + x_3 - 2$ $\lambda x_1 - 10x_2 + 4x_3 = 3$						
	(a) exactly two value of λ	(b) every value of λ					
	(a) chacity two value of h	(b) every varue of h					

(c) exactly one	e positive value of λ	(d) exactly on	e negative value of λ			
33. The real number k for which the equation, $2x^3 + 3x + k = 0$ has two distinct real roots in [0, 1]						
(a) lies betwee	en 1 and 2	(b) lies betwe	(b) lies between 2 and 3			
(b) Does not e	xist	(d) lies betwe	en 1 and 0			
34. The maximum	value of $(\cos \alpha_1) \cdot (\cos \alpha_1)$	os α_2) ($\cos lpha_n$), un	der the restrictions $0 \le \alpha_1, \alpha_2,$	\ldots , $\alpha_n \leq \frac{\pi}{2}$		
and $\cot \alpha_1 \cdot \cot$	et α_2 cot $\alpha_n = 1$ is:			_		
(a) $\frac{1}{2n}$	(b) $\frac{1}{2^{n/2}}$	$(c)\frac{1}{2^n}$	(d) 1			
35. If f(x) is a non	- zero polynomial of d	legree four, having lo	ocal extreme points at $x = -1$, 0, 1	1, then the		
set $S = \{x \in R :$	f(x) = f(0) contains ex	xactly				
(a) Four ration	(a) Four rational numbers					
(b) Two irration	onal and two rational	numbers				
(c) Four irrati						
(d) Two irrational and one rational number 36. The area (in sq units) of the region $\{(x,y): y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$ is: (a) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$ (b) $\pi - \frac{4}{3}$ (c) $\pi - \frac{8}{3}$ (d) $\pi - \frac{4\sqrt{2}}{3}$						
(a) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$	(b) $\pi - \frac{4}{3}$	(c) $\pi - \frac{8}{3}$	(d) $\pi - \frac{4\sqrt{2}}{3}$			
37. The area enclo	osed by the curves y^2 -	+4x = 4 and y - $2x =$	2 is:			
(a) $\frac{22}{3}$	(b) 9	$(c)^{\frac{23}{3}}$	(d) $\frac{25}{3}$			
38. Area of the reg	gion bounded by the c	urve $x = 2y + 3$, the y	- axis and between y = - 1 and y	y = 1 is:		
(a) 4 sq. units		(b) 6 sq. units				
(c) 8 sq. units		(d) 3/2 sq. un	its			
V &	$\frac{s^{-1}x)-x}{(\cos^{-1}x)}$ is equal to:					
(a) $-\sqrt{2}$	(b) $\frac{1}{\sqrt{2}}$	(c) $\sqrt{2}$	(d) $-\frac{1}{\sqrt{2}}$			
40. Let $g: \mathbb{R} \to \left[\frac{\pi}{\epsilon}\right]^{\frac{\pi}{2}}$	$\left(\frac{\pi}{2}\right)$ is defined by $g(x) =$	$\sin^{-1}\left(\frac{x^2-c}{1+c^2}\right)$. Then	the possible values of 'c' for which	ch g is		
surjective fund	<i>L</i> /	(1+x-)				
(a) $\left\{-\frac{1}{2}\right\}$,					
(b) $\left[-\frac{1}{2},1\right)$						
(c) $\left(-1, -\frac{1}{2}\right]$						
(d) $\left\{\frac{1}{2}\right\}$						
(2)						

SKVedge

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
(a)	(a)	(c)	(c)	(a)	(a)	(b)	(b)	(a)	(a)
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
(d)	(b)	(b)	(c)	(b)	(a)	(a)	(b)	(a)	(d)
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
(c)	(d)	(c)	(b)	(a)	(a)	(b)	(d)	(b)	(d)
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
(d)	(c)	(c)	(b)	(d)	(c)	(b)	(b)	(d)	(a)